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This document is designed to provide the learner with a working knowl-
edge of scientific notation, logarithms, dB (decibels), sound pressure
level, dB gain, and the various relationships between these factors.
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INTRODUCTION

Many fields of engineering and science are so intertwined
with the mathematical concepts of logarithms and decibels
that it is vitally important for one to thoroughly understand
their meaning and their operation. The fields of acoustics and
process control are two important examples. Since decibels are
not a common part of most people’s daily lives, this document
is devoted to the development of a thorough understanding
of decibels as they are commonly used.

EXPONENTIAL  RELATIONSHIPS

Most of us are quite familiar with the real number system and
what it means.  We use these real numbers to express a quan-
tity of something.  This quantity is usually referenced to some
absolute reference value, normally zero.  For example, if I don’t
work, I don’t earn any money; i.e., for zero days work, I receive
zero dollars.  On the other hand, if my rate of pay is 10 dollars
per day, then I know that after the first day I will have 10
dollars, and 100 dollars after 10 days.  This type of relationship
is called linear.

Not everything that we encounter in real life can be described
by this type of linear relationship.  For example, suppose that
I bet $1 on a 10 to 1 shot at the racetrack.  If my horse comes in,
my winnings on the first race would be $10.  Since my luck
seems to be good, I might continue to bet my winnings from
each race at the same 10 to 1 odds.  If I won the first four races,
my winnings for each race would be;

first race $10
second race $100
third race $1000
fourth race $10,000

It’s obvious that this relationship is far from linear.  The word
we frequently use to describe this type of relationship is, “ex-
ponential.”  We might further describe this relationship by
saying that the winnings increase by a factor of ten, or by a
power of ten, on each race.  This simply means that we are
describing the increase in my winnings by an exponent of ten,
hence the name, “exponential relationship.”  A table will help
to describe this relationship:

Even though the quantity of my winnings increases in an ex-
ponential manner, it is interesting to note that the exponent of
ten increases in a linear manner.

A useful way to look at this exponential relationship is to think
of the exponent as being the number of times that we multiply
one (or unity) by the factor of ten.  Thus, 102 really means;

102  = 1x10x10 = 100

Using this example as a guide, we would expect to write the
quantity 104 as;

104  = 1x10x10x10x10 = 10,000

This brings up an interesting point of speculation.  Suppose
that we elect to multiply the one by no tens at all!  How would
we express this in exponential notation and what would be the
result?  If we simply follow the pattern of the previous ex-
amples, we can write this as;

1x(no tens) = 100 = 1

Very interesting!  Now, let’s  push the issue even further.  In-
stead of multiplying the one by ten, suppose we elect to di-
vide by ten!  If we assume that we can extend our exponential
notation to cover this situation, we would interpret 10-1 as;

10-1 = 1/(one ten) = 1/10 = 0.1

Following the clue provided by this example, we can now use
this exponential notation to express 0.001 as;

0.001 = 1/1000 = 1/(10x10x10) = 1/103 = 10-3

Just to make certain that we have it all straight in our minds,
lets summarize what we have done so far in a table.

104 = 10,000
103 = 1,000
102 = 100
101 = 10
100 = 1
10-1 = 0.1
10-2 = 0.01
10-3 = 0.001
10-4 = 0.0001

We all know that numbers don’t always come in nice neat
factors of ten.  We frequently get numbers like 5327, 16.52, or
0.00139.  In cases like this, it is helpful to remember that we can

RACE WINNINGS WINNINGS  US ING
EXPONE NT S  OF  10

EXPONE NT

1 $10 $101 1

2 $100 $102 2

3 $1000 $103 3

4 $10,000 $104 4
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manipulate these numbers into other forms with the help of
multiplication or division.  For example;

      5327 = 5.327x1000 = 5.327x103

    16.52 = 1.652x10 = 1.652x101

0.00139 = 1.39/1000 = 1.39x10-3

This type of exponential representation of numbers is known
as scientific notation.  You may have noticed that we wrote
each of these cases so that the lead number was always be-
tween one and ten.  If we make a standard practice of always
doing that on this type of notation, we refer to it as “standard
scientific notation.”

This type of exponential relationship, based on the number 10,
is quite common in the scientific world.  For example, in  early
studies of speech, hearing, and sound, researchers at Bell Labs
found this common base number of ten very useful.  In rating
the magnitudes of various sounds, they found it necessary to
establish a base or reference level of sound.  The reference
point chosen was that level of sound which could just barely
be detected by an average young man with normal hearing.
This “threshold of hearing,” as it was called, was statistically
determined using many, many tests.

Using the threshold of hearing as a reference, these research-
ers proceeded to measure other sounds common to the envi-
ronment, ranging from soft whispers to speeding trains.  The
range of sound powers that were encountered was tremen-
dous.  Furthermore, they discovered that, within this range,
the apparent loudness did not increase in a linear fashion with
sound power, but rather increased quite rapidly by factors of
ten.

The researchers found themselves dealing with everyday
sounds that ranged from a million times as powerful as the
threshold of hearing sound, or perhaps only one tenth as pow-
erful.  They found it very cumbersome to express these vari-
ous sound power levels this way, so they decided to use the
exponential representation.  Even so, it was still cumbersome
to say that a sound was 106 more powerful than the threshold
of hearing, or conversely 10-4 as powerful as the hearing
threshold.

To simplify things even further, some of the researchers adopted
their own shorthand notation and simply said that the POWER
was “up 6” or “down 4.”  What they were stating was simply
the exponent on the common base number, ten.  “Up 6” meant
that the sound was 106 times more powerful than the thresh-
old of hearing; whereas, “down 4” meant that the sound was
only 10-4 as powerful.

DEFINING dB

To help clarify this new notation even further, the Bell Labs
researchers coined a new measurement unit which they called

a “BEL” in honor of Alexander Graham Bell, and added it to
their exponential notation.  Now, if a sound was 1000 times as
powerful as the threshold sound, they could say that it was,
“up 3 BELS.”

It became immediately apparent that they were going to need a
unit of sound measurement that was somewhat smaller than
the BEL.  They divided the BEL into ten parts, called
“deciBELS” since “deci” means “one-tenth.”  Of course, these
Bell Labs researchers knew all along that the exponents they
had been using were really called, “logarithms.”

In order to see this more clearly, we can refresh our memory on
the definition of logarithms; i.e.,

10L = N                                                                     (1)
where:

10 = Base
L = Logarithm (or Log)
N = Number (or anti-Log)

Therefore, using this definition, the base ten logarithm of the
number 100 is equal to 2;  i.e., 102 = 100.

The logarithm definition above is often written in another
equivalent form.

(Logarithm definition)

L = Log
10

 N or 10L = N       (2)

This is read as, “L equals the base ten logarithm of the number
N.”  As was mentioned before, the base ten is the most com-
mon base number that is used in our physical systems.  For
this reason, the logarithm to the base ten is called a “common
logarithm.”  When referring to the common logarithm, it is
sometimes customary to omit the base ten designation and
write the common logarithm simply as;

L = Log N

Here the symbol, “Log” denotes a “common” logarithm.  Us-
ing the definitions given, we can develop a small table of loga-
rithms as follows:

NUMBER (N) LOGARITHM (L)
0.01 -2
0.1 -1
1 0
10 1
100 2

You have probably already noticed that the common logarithm
(L) is the same exponent of the common base ten that was
used in the previous sound measurements.  In that case, the
number (N) was the ratio of the measured sound power to the
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threshold sound power; i.e., the logarithm (L) is identical to
what we previously defined as a BEL.

   BEL = Log
10

 N

   BEL = Log (Measured Power)/(Reference Power)              (3)

and, since the deciBEL is really only one-tenth of a BEL we can
write

   (Number of deciBELS) = dB = 10x(Number of BELS)

therefore,

   dB = 10Log (Measured Power)/(Reference Power)            (4)

From this equation, we see that the term “deciBEL,” or more
commonly, “decibel,” can be abbreviated to the simple nota-
tion, “dB.”  The following table will confirm our understanding
of this relationship.

   

POWER RATIO
(Meas. Power)/(Ref. Power)

DECIBELS
(dB)

0.01 -20 dB
0.1 -10 dB
1 0 dB
10 10 dB
100 20 dB

So far, we have only talked about measurements of the POWER
level.  It is frequently desirable to take measurements of PO-
TENTIAL. In a pneumatic or an acoustic system, pressure
represents the system potential.  In an electrical system, the
variable that represents system potential is voltage (E). If we
were to review our high school physics book, we would recall
the electrical formulas;

E = IR
Power = EI

We can manipulate these two equations into another form
which is very enlightening; i.e.,

Power = E2/R                                                               (5)

Since R represents a system constant and E represents the
potential, we can generalize this equation by saying, “Power is
proportional (α) to the square of the potential.”    In view of
this relationship, we can express the power ratio that we devel-
oped previously as;

   (Meas.Pwr/Ref.Pwr)  α  (Meas.Pot./Ref.Pot.)2

We can now express the dB equation as a function of the
potential as well as the power:

  dB = 10Log (Measured Power/Reference Power)

  dB = 10Log (Measured Potential/Reference Potential)2

This second equation should remind us of a theorem that we
learned in high school math; i.e.,

Log N2 = 2Log N      (See Appendix for a proof)

If we apply this theorem to the second equation of dB immedi-
ately above, we can now express the dB definition in both of
its useful forms;

   dB = 10Log (Meas. Power/Ref. Power)                               (6)

and

   dB = 20Log (Meas. Potential/Ref. Potential)                     (7)

These two important equations may appear to be different, but
they really express the SAME definition in two equivalent
ways.

EXAMPLE:  Assume an electrical circuit with a resistance of
50 ohms.  If we apply 100 volts to this circuit, equation (5)
above shows that the amount of power that would be dissi-
pated would be 200 watts.  If we were to change the voltage on
this circuit to 200 volts, the amount of power dissipated would
now be 800 watts.  This represents a change of +6 dB.  We
doubled the voltage and quadrupled the power.  Either way, it
calculates out to +6 dB.  As we indicated earlier, pressure is the
potential in an acoustic system.  Thus, if we doubled the acous-
tic pressure we would quadruple the acoustic power, and the
change would be +6 dB.

PROCESS  CONTROL  APPLICATION

The concept of measuring things in decibels is also used ex-
tensively in the field of automatic process control, so a review
of this application is also appropriate.

People who work with process control systems find the con-
cept of GAIN very useful.  In very simple terms, gain is essen-
tially the amount of change in output we get from a device or
system for a given change in input; i.e.,

GAIN = (Magnitude of output change)                  (8)
 (Magnitude of input change)
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Even though gain appears to be a type of ratio, it is not a true
dimensionless ratio.  Many control devices have units of out-
put that are different from the units of input measurement.  A
simple pneumatic positioner-actuator device is a good example.
In a typical situation, this device might require a 12 psi change
in the input bellows pressure to produce a 2 inch change in
stem position.  In this example, the gain would be

GAIN = 2 in./12 psi  = 0.167 in./psi

Before we even begin to consider applying the concept of
decibels to this gain, we need to get rid of these units of mea-
surement and form a true dimensionless ratio.  Control people
handle this problem in two ways.  We’ll investigate both.

Nearly all control devices that we are interested in have a
normal operating range, or rated span, on both their input and
output.  The positioner-actuator referenced above has rated
input and output spans of 12 psi and 2 inches respectively.

It is possible to express gain in a slightly different way so that
we can achieve the necessary dimensionless ratio; i.e., we
normalize the gain by expressing the input and output change
as a percent of the rated span.

NORMALIZED GAIN (N.G.) = % change in output             (9)
                           % change in input

Normalized Gain (N.G.) is sometimes referred to as magnitude
ratio, but what we call it is not as important as knowing how to
use it.  We can calculate the normalized gain for the positioner-
actuator example above as follows.

N.G. = 100%/100%  = 1.0

Let’s assume now that some type of internal adjustment is
made on the positioner-actuator mechanism so that the same12
psi change in bellows pressure only produces 1.0 inch of stem
motion.  If we make a new gain calculation, we get

GAIN = 1 in./12 psi  = 0.083 in./psi

This adjustment has cut the gain in half as we can easily see
from the normalized gain calculation.

N.G.  =  50%/100%  = 0.5

 Remember, the rated output span is still 2.0 inches.

Next, we might ask what the ratio of the new gain is to the
original gain.  We can look at this problem in two different
ways; e.g., we can think about the ratio of the normalized gains,
or the ratio of the actual gains.

     RATIO  =  50%/100%  =  0.5
Or                          (10)
     RATIO  = (0.083 in./psi)/(0.167 in./psi)  =  0.5

When we are talking about a gain change, it makes little differ-
ence whether we use the ratio of the actual gains or the ratio of
the normalized gains; the result is the same.

Now comes a loaded question!  How many dB does this gain
change represent?  You may already have guessed that the
correct answer is –6 dB, but let’s find out why.

When dealing with gain in decibels (dB), the only two equa-
tions that we have to chose from are equations (6) and (7).
When the control people originally decided that they needed
a dB relationship to express gain, they had to decide which of
these two equations were the most appropriate.

From a theoretical point of view, there was no valid reason to
choose either one, because the gain isn’t necessarily either a
power or a potential ratio.  On the other hand, there is nothing
so sacred about the dB definition that we have to restrict its
use to either the power or potential ratio.  Actually, the dB
definition is simply a logarithmic function that can be applied
to any dimensionless ratio, provided that the result has some
useful meaning to us.

Strictly from an intuitive point of view, the control people de-
cided that the concept of gain seemed more nearly related to
the potential ratio than to the power ratio.  Hopefully, you will
think so too!  If not, you’re stuck with it anyway.  The decision
was made some time ago and that’s the way it’s always done
now!  (NOTE:  This decision was made easier by the fact that
some of the early control theory work was done on electronic
systems where the gain of the amplifier is the ratio of the out-
put voltage over the input voltage.)

Thus, the definition of gain in dB is

GAIN (dB)  = 20Log
 
(Gain Ratio)                          (11)

We still refer to the result as gain, but we give it units of dB.

The Gain Ratio in equation (11) can actually take several forms.
As we saw in equations (10) that this ratio can be either the
ratio of actual gains or the ratio of normalized gains.

In addition, we can develop a Gain Ratio when we change a
system gain from one value to another; i.e.,

Gain Ratio = (New gain)/(Initial gain)

For example, if we change the gain of a system or device from
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a gain = 4 to a new gain = 2, we would have a gain ratio = 0.5.
We would say that this represents a gain change of –6 dB, or
that we have cut the gain by 6 dB.

QUESTION:  If the normalized gain ratio is 1.0, what would be
the gain in units of dB?

ANSWER:  ZERO!  This particular value has great signifi-
cance to control people.

FREQUENCY RESPONSE

Control people have found that under dynamic conditions,
the gain of most control devices will vary as a function of the
frequency of the input signal.  For example, let’s refer to the
original positioner-actuator example above where the unit was
adjusted so that a 12 psi change in the input would result in a
2 inch change in stem position.

If we were to place the stem position in mid-range and then
vary the input pressure very slowly in a sinusoidal manner
with a total amplitude of 12 psi (± 6 psi), the device would have
plenty of time to respond and we would expect a sinusoidal
output variation of 2 inches total amplitude (± 1 inch).

Under these quasi-static conditions, we would have to say
that the gain (normalized) of the device was 1.0 (i.e., 0 dB).

On the other hand, if we began varying the input pressure at
faster and faster frequencies, but still at a total amplitude of 12
psi, we can visualize that the device just wouldn’t have time to
respond to these faster changes, and the stem would no longer
be able to make its full 2 inches of sinusoidal travel.  In other
words, the gain of the device has decreased simply because
the frequency of the input signal changed.

Likewise, at certain frequencies we might even encounter some
resonant conditions where we might get more output motion
than we expected and the gain increases.  Any way you cut it,
the gain varies as a function of frequency due to the dynamic
characteristics of the device.

It is common and useful in the control business to make a plot
of how the gain of a device changes with frequency.  This is
known as a “frequency response plot,” or alternatively as a
“Bode plot.”  For reasons of convenience, these plots are
usually made in terms of dB Gain versus Frequency.

SUMMARY

For ease of reference, we will review some of the fundamentals
here.  For example, the two equivalent forms of the definition
of the common (base 10) logarithm are

                   (Logarithm definition)

L = Log
10

 N or 10L = N                         (2)

The two equivalent forms of the definition of dB (decibels) are

   dB = 10Log (Meas. Power/Ref. Power)                               (6)

and

   dB = 20Log (Meas. Potential/Ref. Potential)                     (7)

NOTE:  In air-based acoustic systems, the reference values are

Reference Potential = 2x10-5 Pascals

Reference Power = 10-12 Watts

The definition of dB Gain is

GAIN (dB)  = 20Log
 
(Gain Ratio)                          (11)

Finally, there are two fundamental principles that are worth
remembering:

± 6 dB represents a factor of 2 change in potential or gain,
whereas ±3 dB represents a factor of 2 change in power.

A given dB change represents the same physical change in
the environment regardless of whether it is calculated from
the power or the potential ratio.

THE END
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APPENDIX

**************************************************************************************************************************************
PROOF THAT LOG N2 = 2LOG N

We can verify this by starting with N2 and the original definition of logarithm; i.e.,

L = Log N
10L = N

N2 = (N)(N) = (10L)(10L) = 102L

applying the logarithm definition to this statement gives,

2L = Log N2

2(Log N) = Log N2

2Log N = Log N2

**************************************************************************************************************************************

SPECIAL  LOG  OPERATIONS

There are two special operations involving logarithms which are often used. These two relationships are

Log AB = Log A + Log B

     and

Log A/B = Log A - Log B

The first of these operations can be proven quite easily from the definition of the logarithm; i.e., let

10La =A    and 10Lb =B

which corresponds to the equivalent

La = Log
10

A and Lb = Log
10

B

Now, from the above

AB = (10La)( 10Lb) = 10La+Lb

Thus, from the general logarithm definition

Log
10

AB = La + Lb = Log
10

A + Log
10

B

Likewise, the reader should be able to use the same procedure to prove

Log A/B = Log A - Log B

**************************************************************************************************************************************
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