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UNDERSTANDING DECIBELS
(dB or not dB)

INTRODUCTION

Many fields of engineering and science are so intertwined
with the mathematical concepts of logarithms and decibels
that it is vitally important for one to thoroughly understand
their meaning and their operation. Thefields of acoustics and
process control aretwo important examples. Sincedecibelsare
not acommon part of most people’sdaily lives, thisdocument
is devoted to the development of a thorough understanding
of decibels asthey are commonly used.

EXPONENTIAL RELATIONSHIPS

Most of usare quitefamiliar with the real number system and
what it means. We use these real numbersto express a quan-
tity of something. Thisquantity isusually referenced to some
absolutereferencevalue, normally zero. For example, if | don't
work, | don’t earn any money; i.e., for zero dayswork, | receive
zerodollars. Ontheother hand, if my rate of pay is10dollars
per day, then | know that after the first day | will have 10
dollars, and 100 dollars after 10 days. Thistypeof relationship
iscaledlinear.

Not everything that we encounter in real life can be described
by thistype of linear relationship. For example, suppose that
| bet $1 ona10to 1 shot at theracetrack. If my horse comesin,
my winnings on the first race would be $10. Since my luck
seems to be good, | might continue to bet my winnings from
eachraceat thesame 10to 1 odds. If | wonthefirst four races,
my winnings for each race would be;

firstrace $10
second race $100
third race $1000
fourth race $10,000

It's obviousthat thisrelationship isfar from linear. Theword
we frequently useto describe thistype of relationshipis, “ex-
ponential.” We might further describe this relationship by
saying that the winnings increase by a factor of ten, or by a
power of ten, on each race. This ssimply means that we are
describing theincreasein my winnings by an exponent of ten,
hence the name, “ exponential relationship.” A tablewill help
to describe this relationship:

RACE | WINNINGS | WINNINGS USING | EXPONENT
EXPONENTS OF 10
1 $10 101 1
2 $100 $102 2
3 $1000 $103 3
4 $10,000 $10 4

Even though the quantity of my winningsincreasesin an ex-
ponential manner, it isinteresting to note that the exponent of
tenincreasesin alinear manner.

A useful way tolook at thisexponentia relationshipistothink
of the exponent as being the number of timesthat we multiply
one (or unity) by the factor of ten. Thus, 102 really means,

102 = 1x10x10=100

Using this example as a guide, we would expect to write the
quantity 104 as,

10% = 1x10x10x10x10= 10,000

This brings up an interesting point of speculation. Suppose
that we elect to multiply theone by notensat all! How would
we expressthisin exponential notation and what would bethe
result? If we ssimply follow the pattern of the previous ex-
amples, we can writethisas;

Ix(notens) = 100=1
Very interesting! Now, let's push the issue even further. In-
stead of multiplying the one by ten, suppose we elect to di-
videby ten! If we assumethat we can extend our exponential
notation to cover this situation, we would interpret 101 as;

101= 1/(oneten) =1/10=0.1

Following the clue provided by this example, we can now use
this exponential notation to express 0.001 as;

0.001= 1/1000= 1/(10x10x10) = /103=10°3

Just to make certain that we have it all straight in our minds,
|ets summarize what we have done so far in atable.

10* = 10000
103 = 1000
10?7 = 100
10t = 10
10 =1
10l = o1
102 = 001
103 = 0001
104 = 00001

We all know that numbers don’t always come in nice neat
factorsof ten. Wefrequently get numberslike 5327, 16.52, or
0.00139. Incaseslikethis, itishe pful to remember that we can



mani pulate these numbers into other forms with the help of
multiplication or division. For example;

5327 =5327x1000  =5327x10°
1652 =1652x10 =1652x10%
000139 =1391000  =13%10°3

Thistype of exponential representation of numbersis known
as scientific notation. You may have noticed that we wrote
each of these cases so that the lead number was always be-
tween one and ten. If we make a standard practice of always
doing that on thistype of notation, werefer to it as“ standard
scientific notation.”

Thistype of exponential relationship, based on the number 10,
isquitecommoninthescientificworld. For example, in early
studies of speech, hearing, and sound, researchersat Bell Labs
found this common base number of ten very useful. Inrating
the magnitudes of various sounds, they found it necessary to
establish a base or reference level of sound. The reference
point chosen was that level of sound which could just barely
be detected by an average young man with normal hearing.
This“threshold of hearing,” asit was called, was statistically
determined using many, many tests.

Using the threshold of hearing as areference, these research-
ers proceeded to measure other sounds common to the envi-
ronment, ranging from soft whispers to speeding trains. The
range of sound powers that were encountered was tremen-
dous. Furthermore, they discovered that, within this range,
the apparent loudness did not increasein alinear fashion with
sound power, but rather increased quite rapidly by factors of
ten.

The researchers found themselves dealing with everyday
sounds that ranged from a million times as powerful as the
threshold of hearing sound, or perhaps only onetenth as pow-
erful. They found it very cumbersome to express these vari-
ous sound power levels this way, so they decided to use the
exponential representation. Even so, it was still cumbersome
to say that asound was 108 more powerful than the threshold
of hearing, or conversely 104 as powerful as the hearing
threshold.

To simplify thingseven further, some of the researchers adopted
their own shorthand notation and simply said that the POWER
was“up 6” or “down 4.” What they were stating was simply
the exponent on the common base number, ten. “Up 6” meant
that the sound was 108 times more powerful than the thresh-
old of hearing; whereas, “down 4" meant that the sound was
only 10%as powerful.

DEFINING dB

To help clarify this new notation even further, the Bell Labs
researchers coined anew measurement unit which they called

a“BEL” in honor of Alexander Graham Bell, and added it to
their exponential notation. Now, if asound was 1000timesas
powerful as the threshold sound, they could say that it was,
“up3BELS”

It becameimmediately apparent that they weregoingto need a
unit of sound measurement that was somewhat smaller than
the BEL. They divided the BEL into ten parts, called
“deciBELS’ since“deci” means“one-tenth.” Of course, these
Bell Labsresearchers knew all along that the exponents they
had been using werereally called, “logarithms.”

In order to seethismore clearly, we can refresh our memory on
the definition of logarithms; i.e.,

10-= N (1)
where:

10 = Base

L = Logarithm (or Log)

N = Number (or anti-Log)

Therefore, using this definition, the base ten logarithm of the
number 100isequa to2; i.e., 10%=100,

The logarithm definition above is often written in another
equivaent form.

(L ogarithm definition)

— L_

L-LoglON or 10-=N ()]
Thisisread as, “L equalsthe baseten logarithm of the number
N.” Aswas mentioned before, the base ten is the most com-
mon base number that is used in our physical systems. For
thisreason, the logarithm to the baseten is called a“ common
logarithm.” When referring to the common logarithm, it is
sometimes customary to omit the base ten designation and
writethe common logarithm simply as;

L=LogN
Here the symbol, “Log” denotesa“common” logarithm. Us-

ing the definitions given, we can develop asmall table of loga-
rithmsasfollows:

NUMBER(N) LOGARITHM (L)
001 2
01 -1
1 0
10 1
100 2

You have probably already noticed that the common logarithm
(L) is the same exponent of the common base ten that was
used in the previous sound measurements. In that case, the
number (N) was the ratio of the measured sound power to the
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threshold sound power; i.e., the logarithm (L) isidentical to
what we previously defined asaBEL.

BEL =Log 10 N
BEL = Log (Measured Power)/(Reference Power) 3

and, sincethedeciBEL isredlly only one-tenth of aBEL wecan
write

(Number of deciBEL S) =dB = 10x(Number of BELYS)
therefore,

dB = 10L og (M easured Power)/(Reference Power) (4)
From this equation, we see that the term “deciBEL,” or more
commonly, “decibel,” can be abbreviated to the simple nota-

tion, “dB.” Thefollowing tablewill confirm our understanding
of thisrelationship.

POWER RATIO DECIBELS
(Meas. Power)/(Ref. Power) (dB)
0.01 -20 dB
0.1 -10 dB
1 0dB
10 10 dB
100 20 dB

So far, we have only talked about measurements of the POWER
level. Itisfrequently desirable to take measurements of PO-
TENTIAL. In a pneumatic or an acoustic system, pressure
represents the system potential. In an electrical system, the
variable that represents system potential isvoltage (E). If we
wereto review our high school physicsbook, wewould recall
theelectrical formulas;

E=IR
Power =El

We can manipulate these two equations into another form
whichisvery enlightening; i.e.,

Power = EZ/R (5)

Since R represents a system constant and E represents the
potential, we can generalize thisequation by saying, “Power is
proportional (a) to the square of the potential.” In view of
thisrelationship, we can expressthe power ratio that we devel -
oped previoudy as;

(Meas.Pwr/Ref.Pwr) o (Meas.Pot./Ref.Pot.)2

We can now express the dB equation as a function of the
potential aswell asthe power:

dB = 10L og (Measured Power/Reference Power)
dB = 10L og (Measured Potential/Reference Potential)2

This second equation should remind us of atheorem that we
learned in high school math; i.e.,

Log N2= 2LogN  (See Appendix for aproof)
If we apply thistheorem to the second equation of dB immedi-

ately above, we can now express the dB definition in both of
its useful forms;

dB =10L og (M eas. Power /Ref. Power) (6)
and
dB =20L og (M eas. Potential/Ref. Potential) @)

Thesetwo important equations may appear to be different, but
they really express the SAME definition in two equivalent

ways.

EXAMPLE: Assumean electrical circuit with aresistance of
50 ohms. If we apply 100 volts to this circuit, equation (5)
above shows that the amount of power that would be dissi-
pated would be 200 watts. If wewereto changethevoltageon
thiscircuit to 200 volts, the amount of power dissipated would
now be 800 watts. This represents a change of +6 dB. We
doubled the voltage and quadrupled the power. Either way, it
calculatesoutto+6 dB. Asweindicated earlier, pressureisthe
potential inan acoustic system. Thus, if wedoubled the acous-
tic pressure we would quadrupl e the acoustic power, and the
changewould be +6 dB.

PROCESS CONTROL APPLICATION

The concept of measuring things in decibels is also used ex-
tensively inthefield of automatic process control, so areview
of thisapplication is also appropriate.

People who work with process control systems find the con-
cept of GAIN very useful. Invery simpleterms, gainisessen-
tially the amount of change in output we get from adevice or
system for agiven changeininput; i.e.,

GAIN = (Magnitude of output change) (8
(Magnitude of input change)



Even though gain appearsto be atype of ratio, it isnot atrue
dimensionlessratio. Many control devices have units of out-
put that are different from the units of input measurement. A
simple pneumatic positioner-actuator deviceisagood example.
Inatypical situation, thisdevice might requireal12 psi change
in the input bellows pressure to produce a 2 inch change in
stem position. Inthisexample, the gain would be

GAIN=2in/12ps =0.167in./ps

Before we even begin to consider applying the concept of
decibelsto this gain, we need to get rid of these units of mea-
surement and form atrue dimensionlessratio. Control people
handle this problem in two ways. We'll investigate both.

Nearly all control devices that we are interested in have a
normal operating range, or rated span, on both their input and
output. The positioner-actuator referenced above has rated
input and output spans of 12 psi and 2 inches respectively.

Itispossibleto expressgaininadgightly different way so that
we can achieve the necessary dimensionless ratio; i.e., we
normalize the gain by expressing the input and output change
as a percent of the rated span.

NORMALIZED GAIN (N.G.) =% changein output (9
% changein input

Normalized Gain (N.G.) issometimesreferred to asmagnitude
ratio, but what wecall itisnot asimportant asknowing how to
useit. Wecan calculatethe normalized gain for the positioner-
actuator example aboveasfollows.

N.G. =1009%/100% =1.0

Let's assume now that some type of internal adjustment is
made on the positioner-actuator mechanism so that the samel2
psi changein bellows pressure only produces 1.0 inch of stem
motion. If wemakeanew gain calculation, we get

GAIN=1in/12ps =0.083in./ps

This adjustment has cut the gain in half as we can easily see
from the normalized gain calculation.

N.G. = 50%/100% =0.5
Remember, the rated output spanisstill 2.0 inches.
Next, we might ask what the ratio of the new gain is to the
origina gain. We can look at this problem in two different

ways, e.g., wecan think about the ratio of thenormalized gains,
or the ratio of the actual gains.

RATIO = 50%/100% = 0.5
Or (10)
RATIO =(0.083in./psi)/(0.167 in./psi) = 0.5

When wearetaking about again change, it makeslittlediffer-
encewhether we usetheratio of the actual gainsor theratio of
the normalized gains; the result is the same.

Now comes aloaded question! How many dB doesthisgain
change represent? You may aready have guessed that the
correct answer is—6 dB, but let’s find out why.

When dealing with gain in decibels (dB), the only two equa
tions that we have to chose from are equations (6) and (7).
When the control people originally decided that they needed
adB relationship to express gain, they had to decide which of
these two equations were the most appropriate.

From atheoretical point of view, there was no valid reason to
choose either one, because the gain isn’t necessarily either a
power or apotential ratio. On the other hand, there isnothing
so sacred about the dB definition that we have to restrict its
use to either the power or potential ratio. Actualy, the dB
definition issimply alogarithmic function that can be applied
to any dimensionlessratio, provided that the result has some
useful meaning to us.

Strictly from anintuitive point of view, the control people de-
cided that the concept of gain seemed more nearly related to
the potential ratio than to the power ratio. Hopefully, youwill
think sotoo! If not, you' restuck withit anyway. Thedecision
was made some time ago and that’s the way it's always done
now! (NOTE: Thisdecisionwasmade easier by thefact that
some of the early control theory work was done on electronic
systems where the gain of the amplifier istheratio of the out-
put voltage over the input voltage.)

Thus, the definition of gainindB is

GAIN (dB) =20L og(Gain Ratio) (1D
We still refer to the result as gain, but we give it units of dB.
TheGain Ratioin equation (11) can actually take severd forms.
Aswe saw in equations (10) that this ratio can be either the

ratio of actual gainsor theratio of normalized gains.

In addition, we can develop a Gain Ratio when we change a
system gain from one value to another; i.e.,

Gain Ratio = (New gain)/(Initial gain)

For example, if we changethegain of asystem or devicefrom



again=4toanew gain=2, wewould haveagain ratio=0.5.
We would say that this represents a gain change of —6 dB, or
that we have cut the gain by 6 dB.

QUESTION: If thenormaized gainratiois 1.0, what would be
the gain in units of dB?

ANSWER: ZERQ! This particular value has great signifi-
cance to control people.

FREQUENCY RESPONSE

Control people have found that under dynamic conditions,
the gain of most control deviceswill vary asafunction of the
frequency of theinput signal. For example, let's refer to the
original positioner-actuator example above wherethe unit was
adjusted so that a 12 psi change in the input would result in a
2 inch change in stem position.

If we were to place the stem position in mid-range and then
vary the input pressure very slowly in a sinusoidal manner
with atotal amplitude of 12 psi (+ 6 psi), the devicewould have
plenty of time to respond and we would expect a sinusoidal
output variation of 2 inchestotal amplitude (+ 1 inch).

Under these quasi-static conditions, we would have to say
that the gain (normalized) of thedevicewas 1.0 (i.e., 0dB).

On the other hand, if we began varying the input pressure at
faster and faster frequencies, but till at atotal amplitude of 12
psi, we can visualize that the device just wouldn't have timeto
respond to these faster changes, and the stem would no longer
be able to makeitsfull 2 inches of sinusoidal travel. In other
words, the gain of the device has decreased simply because
the frequency of the input signal changed.

Likewise, at certain frequencieswe might even encounter some
resonant conditions where we might get more output motion
than we expected and the gain increases. Any way you cut it,
the gain varies as afunction of frequency due to the dynamic
characteristics of the device.

Itiscommon and useful in the control businessto make aplot
of how the gain of a device changes with frequency. Thisis
known as a “frequency response plot,” or alternatively as a
“Bode plot.” For reasons of convenience, these plots are
usually madein terms of dB Gain versus Frequency.

SUMMARY
For ease of reference, wewill review some of thefundamentals

here. For example, the two equivalent forms of the definition
of thecommon (base 10) logarithm are

(Logarithm definition)
= L =
L LoglON or 10-=N 2

Thetwo equivalent formsof the definition of dB (decibels) are

dB = 10L og (M eas. Power /Ref. Power) (6)
and
dB =20L og (M eas. Potential/Ref. Potential) @)

NOTE: Inair-based acoustic systems, thereferencevaluesare
Refer ence Potential = 2x10"° Pascals
Reference Power = 1012 watts

Thedefinition of dB Gainis
GAIN (dB) =20L og(Gain Ratio) 1y

Finally, there are two fundamental principles that are worth
remembering:

+ 6dB representsafactor of 2 changein potential or gain,
whereas+3dB representsafactor of 2changein power.

A given dB changer epresentsthesame physical changein
theenvironment regar dlessof whether it iscalculated from
thepower or thepotential ratio.

THE END



APPENDIX
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PROOF THAT LOG N2=2LOG N
We can verify thisby starting with N2 and the original definition of logarithm; i.e.,

L=LogN
10t =N

N2=(N)(N) = (10-)(10-) =102
applying the logarithm definition to this statement gives,
2L =LogN?2

2(LogN) =LogN?
2LogN =LogN?
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SPECIAL LOG OPERATIONS
There are two special operationsinvolving logarithms which are often used. These two relationships are
LogAB=LogA +LogB
and
LogA/B=LogA-LogB
Thefirst of these operations can be proven quite easily from the definition of the logarithm; i.e., let
10-3=A and 10-P=B
which corresponds to the equivalent
La= LOglOA and Lb= LOglOB
Now, from the above
AB = (103 10-b) = 10L-a+Lb
Thus, from the general logarithm definition
LoglOAB =La+Lb= LOglOA + LOglOB
Likewise, the reader should be able to use the same procedure to prove

LogA/B=LogA-LogB
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