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Fundamentals of Valve
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Introduction

Improper valve sizing can be both expensive and in-
convenient. A valve that's too small will not pass the re-
quired flow, and the process will be starved. A valve that is
oversize will not only be more expensive, but it can also lead
to instability and other problems.

The days of selecting a valve based upon the size of the
pipeline are gone forever. Selecting the correct valve size for
a given application requires a knowledge of process con-
ditions that the valve will actually see in service. The
technique for using this information to size the valve is bas-
ed upon a combination of theory and experimentation.
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Early efforts in therdevelopment of wvalve sizing theory
centered around the problem of sizing valves for liquid flow.
Daniel Bernoulli was one of the early experimenters who
applied the science of fluid flow theory to liquid flow.
Subsequent experimental modifications to this theory have
produced a useful liquid flow equation.

Qpm = C,A/DP/G

where: (1)
Q = Liquid flow in gpm

Valve sizing coefficient

Valve pressure drop

G = Liquid specific gravity
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This equation rapidly became widely accepted for sizing
valves on liquid service and most manufacturers of valves
began publishing C, data in their catalogs.

It was inevitable that the valves, which had worked so well
on liquids, would sooner or later be used to control the flow
of gases, such as air.

It was probably just as inevitable that the good results ob-
tained from the C, equation would strongly tempt its use to
predict the flow of gas.

Moadified C, Equation

In order to use the liquid flow equation for air it was
necessary to make two modifications. The first step was to
introduce a conversion factor to change flow units from
gallons-per-minute to cubic-feet-per-hour. The second step
was to relate liquid specific gravity in terms of pressure,
which would be more meaningful for gas flow. The result
was the C, equation revised for the flow of air at 60°F.

59.64C,P, ~/AP/P, (2)
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Generalizing this equation to handle any gas at any

temperature requires only a simple modification factor based
upon Charles’ Law for gases.

Quoy = 59.64C P, A/AP/P,A/520/GT (3)

The term 520 represents the product of the specific gravity
and temperature of air at standard conditions. The specific
gravity is one or unity. In absolute units, the standard
temperature is 520°R which corresponds to 60°F. The G
and T represent the specific gravity and absolute
temperature of any gas.

The apparent simplicity of Equation (3) can obscure the
serious problems that develop from indiscriminately using
this simple conversion without being aware of its rather
strict limitations that result from compressibility effects and
critical flow.
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Figure | Comparison of Equation (3) and an
Actual Flow Curve




A plot of this equation shows a straight line relationship
where the slope of the curve is a function of the valve sizing
coefficient, C,. The greater the C, of the valve, the steeper
the slope.

An actual flow curve would show good agreement with the
theoretical curve at low pressure drops. However, a signifi-
cant deviation occurs at pressure drop ratios greater than
approximately 0.02 because the equation was based upon

the assumption of incompressible flow. When the pressure -
drop ratio exceeds approximately 0.02 the gas can no longer *

be considered an incompressible fiuid.
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Figure 2. Vena Contracta Illustration

A much more serious limitation on this equation involves the
phenomenon of critical flow. To help understand critical
flow, a control valve, at any flow opening, can be
represented by a simple restriction in the line. As the flow
passes through the physical restriction, there is a necking
down, or contraction, of the flow stream. The minimum
cross-sectional area of the flow stream occurs just a short
distance downstream of the physical restriction at a point
called the vena contracta. In order to maintain a steady
flow of fluid through the valve, it is obvious that the velocity
must be greatest at the vena contracta where the cross-
sectional area is the least.

As the AP across the valve increases, flow also increases,
and the velocity at the vena contracta increases. At some

value of AP, however, the gas reaches sonic velocity at the
vena contracta. Since the gas can't normally travel any
faster than this limiting velocity, a choked flow condition is
reached known as critical flow.

When critical flow is reached, Equation {3) becomes ab-
solutely worthless for predicting the flow since the flow no
longer increases with pressure drop. So far, all we have is an
equation that deviates significantly from the actual flow for
pressure drop ratios greater than 0.02 and is totally inac-
curate once critical flow is reached.

Various valve manufacturers modified the C, equation even
further in an attempt to predict the behavior of gases at both
critical and subcritical flow conditions. This approach had a
very strong economic appeal to the manufacturers since it
meant they would still only have to test their valves on water
to obtain a C,. The modified equation would then take care
of predicting the gas flow. As it turned out, three equations
were developed all of which did a fairly decent job of predic-
ting gas flow through standard globe type valves at pressure
drop ratios less than 0.5.

Q = 1360CA/P,~P,)P,/GT (4)
Q = 1364CA/(P,—P,IP,/GT (5)
Q = 1360CA/AP/GT, /[P, +P,)/2 (6

For globe type valves, which were in most common use at
the time, critical flow is reached at a pressure drop ratio of
about 0.5. In the low pressure drop region the slope of the
flow curve plotted from any of these three equations is the
same as that established by the original C, equation (Eq. 3).
If the pressure drop ratio is equal to 0.5, each of the
modified equations will predict a flow which approximates
the actual critical flow. At this point, all three of the modified
equations reduce to the form of a constant times C, and the
absolute inlet pressure. This indicates that once the critical
pressure ratio is reached, the flow through the valve will no
longer be dependent upon the pressure drop across the
valve. The flow will change only as a function of the inlet
pressure.



For a while it looked as though the problem was solved. Low
recovery type valves, such as those shown in Figure 3
worked reasonably well with these equations, but then along
came various types of high recovery valves such as those
shown in Figure 4.

High Recovery Valves

5,
The flow through a hih recovery valve is quite streamlined
and efficient compared to that in a low recovery type valve.
If two valves have equal flow areas and are passing the
same flow, the high recovery valve will exhibit much less
pressure drop than the low recovery valve. High and low
recovery refer to the valve’s ability to convert velocity at the
vena contracta back into pressure downstream of the valve.

lgh Recovery Valves
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Figure 5. Comparison of Pressure Profiles for High
and Low Recovery Valves

The pressure profiles for two valves having the same pres-
sure drop and flow rate are shown in Figure 5. If critical flow
is imminent, it is obvious that the pressure drop ratio for the
high recovery valve will be much less than for the low recov-
ery valve. While it's true that low recovery valves, such as the
globe style valves, exhibit critical flow at a pressure drop
ratio of 0.5, the more efficient high recovery valves can ex-
hibit critical flow at pressure drop ratios as low as 0.15.

Nowy, let’s consider the case of a high recovery valve and a
low,recovery valve that both have the same C,. Since the in-
itial slop of the flow curve is related to C,, this portion of the
cdrve will be the same for both valves.

Since the flow predicted by the critical flow equation
depends directly upon C, the equation will predict the same
critical flow for both valves. We have already seen, however,
that the high recovery valve will exhibit critical flow at
pressure drop ratios as low as 0.15. In other words, the
modified C, equations grossly over-predict the critical flow
through the high recovery valve.

This point is important enough to warrant repeating. A high
recovery valve with the same C, and tested under similar
conditions as a low recovery valve will have much less
critical gas flow capacity. Thus, if the modified C, equations,
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Figure 6. Critical Flow for High and Low Recovery
Valves with Equal C,
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intended for /ow recovery valves, are used to size a high
recovery valve, the critical flow capacity of the valve can be
over-estimated by as much as 300 percent.

This may sound like a strange circumstance, but it should be
realized that for both valves to have the same C, the high
recovery valve would be much smaller than the low recovery
valve. The geometry of the valve greatly influences liquid
flow; whereas, the critical flow of gas depends essentially
only upon the flow area of the valve. Thus, a smaller high
recovery valve will pass less critical gas flow, but its greater
streamlined flow geometry allows it to pass as much liquid
flow as the larger low recovery valve.

C,, A Gas Sizing Coefficient

Because of the problems in using C, to predict critical flow in
both high and low recovery valves, Fisher Controls Com-
pany began testing all valves on air as well as water. From
these tests, a gas sizing coefficient, C,. was defined in 1951
to relate critical flow to the absolute inlet pressure. Since Cqy
is experimentally determined for each style and size of valve
it can be used to accurately predict the critical flow for both
high and low recovery valves. Equation (7) shows the defin-
ing equation for G,

c,P

O‘cririca/ = g1

A

C, is determined by testing the valve with 60°F air under
critical flow conditions. To make the equation applicable for
any gas at any, temperature, the same correction factor can
be used that was applied previously to the original C, equa-
tion.

Q

critical ™

C,PA/520/GT (8)

Fisher now found itself with two gas sizing equations. One
equation (Eq. 3) applied only to quite low pressure drop
ratios while the other (Eq. 8) was good only for predicting
critical flow. What about the transition region?

In an attempt to put the pieces of this puzzle together, the
Fisher research department conducted thousands of tests on
every different style of valve available including both high
and low recovery valves as well as some intermediate ones.

When the resuits of these tests were normalized with
respect to critical flow and then plotted, a very useful fact
became apparent. It was noted that all of the test points in
the sloping portion of the flow curve could be quite closely
approximated by the first quarter cycle of a standard sine
curve.

Universal Gas Sizing Equation

Based on this test program, Fisher Controls Company
developed, in 1963, a Universal Gas Sizing Equation. This
equation is universal in the sense that it accurately predicts
the flow for either high or low recovery valves, for any gas

(7) *

and under any service conditions. This equation incorporates
both the basic C, equation and the C, critical flow equation
into a single, dual-coefficient equation where the new factor,
C,, is introduced.

Quon = A/B20/GT C,P,SIN[(58.64/C,IVAPTP, |y, (9

where:
C, = G,/C,

C, is defined as the ratio of the gas sizing coefficient and the
liguid sizing coefficient. It provides an index which tells us

something about the physical flow geometry of the valve. In
other words, its numerical value tells us whether the valve

is high or low recovery or someplace in between. A simple il-
lustration will help clarify the relationship between C, and
the valve recovery characteristics.

Example:

High Recovery Valve Low Recovery Valve

C, = 4680 G, = 4680

C, = 254 C, = 135

c, = C/C, G = G/C,
= 4680/254 = 4680/135
= 18.4 = 347

Assume two valves with identical flow areas. One is a high
recovery valve, and one is low recovery. Since C, is deter-
mined under critical flow conditions it is relatlvely indepen-
dent of the recovery characteristics of the valve, The critical
flow is primarily a function of the valve area only. Thus both
valves will have the same Cq. Flow geometry, however, has
a significant influence upon liquid flow. The greater efficien-
cy and better streamlining of the high recovery valve will
allow it to pass nearly twice as much liquid flow even with
the same port area. Correspondingly the C, will be nearly
twice as large as the low recovery valve.

This example not only shows how C, can vary with valve
recovery characterisitics, but it also illustrates the typical
range of C, values. In general, C, values can range from
about 16 to 37.

Note that C,, which appears in the denominator, is the factor
which varies primarily with the valve's recovery
characteristics. This example illustrates the general principle
that high recovery valves have low C, values, while low
recovery valves have high C, values.

In order to accurately predict the gas flow for any style valve,
two sizing coefficients are needed. C, helps to predict the
flow based upon the physical size or flow area, while C, ac-
counts for differences in valve recovery characterlstscs. The
Universal Gas Sizing Equation (Eq. 9) incorporates both of
these coefficients. This equation may appear somewhat
complex upon first encounter, but a look at the two ex-
tremes of the equation can clear up some of the mystery.



First, consider the extreme where the valve pressure drop
ratio is quite small (AP/P, < 0.02). This means that the angle
of the sine function will also be quite small in radians. From
basic trigonometry recall that, for small angles, the sine of
the angle can be approximated by the angle itself in radians.
Under this assumption of a small pressure drop ratio, the un-
iversal gas sizing equation simply reduces to the original C,
equation (Eq. 3). We already know that this equation fits the
flow data in the incompressible flow region where the
pressure drop ratio is less than 0.02.

The other extreme of the Universal Sizing Gas Equation is in
the region of critical flow. Critical flow is first established at
. 18 . . . B
the point where the sine function reaches its maximum
value at the end of the first quarter cycle. At this point the
sine function is equal to one and the angle is equal to /2
radians. The pressure drop ratio at this point is known as the
critical pressure drop ratio.

At the critical pressure drop ratio, where the sine function
becomes unity, the Universal Gas Sizing Equation simply
reduces to the critical flow equation (Eq. 8). This Universal
Gas Sizing Equation was originally developed to predict the
critical flow for any valve style based upon the experimental-
ly determined gas sizing coefficient, C,.

In summary, the Universal Gas Sizing Equation takes the
basic C, equation at one extreme and the critical flow equa-
tion at the other extreme and blends the two together with a
sinusoidal function that fits the experimental data. All of this
in one universal equation!

Some individuals find it more convenient to deal with sine
angles in degrees rather than in radians. This is easily ac-
commodated by a simple conversion constant. The new con-
stant in the angle becomes 3417 rather than 59.64. Now,
the sine angle will be 80 degrees at the critical pressure drop
ratio rather than n/2 radians.

Qe = ~/520/GT CgP,SINE3417/C,)/\/AP/P,:'DB§ (10)

As the pressure drop across the valve increases, the sine
angle increases from zero up to 90 degrees. If the angle is
allowed to increase beyond 90 degrees, the equation would
predict a decrease in flow. Since this is not a realistic situa-
tion, the angle must be restricted to 90 degrees maximum,
B

THY mathematical development of the Universal Gas Sizing
Equation shown in Equation (10) is based upon the use of
the perfect gas laws. The expression A/520/GT is derived
from the equation of state for a perfect gas. While it is true
that no perfect gases, as such, exist in nature, there are a
multitude of applications where the perfect gas assumption
is a useful approximation.

For those special applications where the perfect gas
assumption is not adequate, a more general form of the
Universal Gas Sizing Equation has been developed.

Qs = 1.067/4,P, CgSINE3417/C,)/\/AP/P,:|Deg, (11)
where:
Qpyne = Gas, Steam, or Vapor flow {lbs/hr.)
d, = Inlet gas density (lbs/ft?)

Equation (11} is known as the density form of the Universal
Gas Sizing Equation. It is the most general form and can be
used for both perfect and non-perfect gas applications.
Steam is the most common application where Equation {11)
is used. The steam density can be easily found from publish-
ed steam tables.

Because steam service applications are so common, a
special form of the Universal Equation was developed. If the
pressure stays below 1000 psig, Equation {12) can be used
which simplifies 'the calculation.




Quor, = [CP/11 +O.00065TS,,[|SINB3417/C,)'\/AP/P,:|DQQ,
(12)

where:
CS
Tsh

= Steam sizing coefficient
Degrees of superheat (°F)

Equation (11) is more general and can be used in all cases
where Equation (12) is valid; however, Equation {11) re-
quires a knowledge of the steam density (d,). For steam

below 1000 psig, a constant relationship exists between the 4

gas sizing coefficient (Cg) and the steam sizing coefficient
(C,).

C, = C,/20 (13)
Density changes that occur as the steam becomes

superheated are compensated for by the superheat correc-
tion factor that appears in the denominator of Equation (12).
Use of Equation (12) eliminates the need for steam tables to
ook up the density of superheated steam.

At pressures greater than 1000 psig, the steam begins to
deviate significantly from the constant relationship defined
in Equation {13) and the superheat correction is no longer
valid. At greater pressures, Equation (11) must be used for
accurate results.

Conclusion

The Universal Gas Sizing Equation can be used to determine
the flow of gas through any style of valve. Absolute units of
temperature and pressure must be used in this equation,
When the critical pressure drop ratio causes the sine angle
to be 90 degrees, the equation will predict the value of the
critical flow. For service conditions that would result in an
angle of greater than 90 degrees, the equation must be
limited to 80 degrees in order to accurately determine the
critical flow that exists.
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The most common use of the Universal Gas Sizing Equation
is to determine the proper valve size for a given set of service
conditions. The first step is to calculate the required C, by
using the Universal Gas Sizing Equation. The second step is
to select a valve from the catalog with a C, which equals or
exceeds the calculated value. Care should be exercised to
make certain that the assumed C, value for the C, calcula-
tion matches the C, for the final valve selection from the
catalog.

It should be apparent by now that accurate valve sizing for
gases requires use of the dual coefficients C, and C,. A
single coefficient is not sufficient to describe both the
capacity and the recovery characteristics of the valve.

This paper has dealt exclusively with the problem of sizing
valves for gas flow. Liquid flow requires a different set of
considerations which are discussed in another paper.”

The proper selection and sizing of a control valve for gas ser-
vice is a highly technical problem with many factors to be
considered. Fisher Controls Company provides technical in-
formation, test data, sizing catalogs, nomographs, sizing
sliderules, and even computer programs that remove the
guesswork and make valve sizing a simple and accurate
procedure.
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